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Abstract 

The accuracy and efficiency of two types of subiterations in both explicit and implicit Navier-Stokes 
codes are explored for unsteady laminar circular-cylinder flow and unsteady turbulent flow over an 
18-percent-thick circular-arc (biconvex) airfoil. Grid and time-step studies are used to assess the 
numerical accuracy of the methods. Nonsubiterative time-stepping schemes and schemes with physical 
time subiterations are subject to time-step limitations in practice that are removed by pseudo time sub- 
iterations. Computations for the circular-arc airfoil indicate that a one-equation turbulence model 
predicts the unsteady separated flow better than an algebraic turbulence model; also, the hysteresis 
with Mach number of the self-excited unsteadiness due to shock and boundary-layer separation is well 
predicted. 

Introduction 
Although still prohibitively expensive, the routine in- 

clusion of unsteady flow computations using the Navi- 
er-Stokes equations into the aircraft aerodynamic design 
cycle becomes more tractable as the speed and memory 
capacity of computers continues to increase. Many com- 
puter codes currently exist that can perform time-accu- 
rate (in addition to steady-state) computations; however, 
because most applications are still made in the steady- 
state realm, relatively little effort has been spent in the 
systematic analysis of the accuracy and efficiency of 
these codes for unsteady flows. In addition, little is cur- 
rently known about the applicability of the new genera- 
tion of eddy-viscosity field-equation turbulence models 
to unsteady flows. 

Earlier works have addressed some of the consider- 
ations necessary in the application of Navier-Stokes 
codes to unsteady flow computations. For example, 
Pulliam' and Newsome2 showed the importance of sub- 
iterations in enhancing the time accuracy of convention- 
al implicit schemes. Jameson3 and Melson et al.4 
developed a subiterative technique within the context of 
a multigrid methodology to allow practical time steps 
with the use of an explicit code. 

The current work combines some of the concepts pre- 
sented in these earlier papers into a comprehensive 
study that explores subiteration strategies as applied to 
explicit and implicit computer codes. The explicit cen- 
tral-differenc code TLNS3D' and the implicit upwind 

ations to advance the equations of motion in a time-ac- 
curate manner. Two approaches to performing sub- 

code CFL3D % are both used in conjunction with subiter- 
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iterations are explored and compared. Computations are 
performed for laminar flow over a circular cylinder and 
for turbulent flow over an 18-percent-thick circular-arc 
airfoil for which self-excited shock-induced flow oscil- 
lations occur. (See McDevitt7 and Mabey.8) 

Previous computational studies with the Navier- 
Stokes equations were Ftrformed for the circular-arc 
airfoil by Levy? Steger, and Edwards and Thomas." 
Levy used the MacCormack explicit scheme; Steger and 
Edwards and Thomas used implicit approximate-factor- 
ization schemes. All employed algebraic turbulence 
models. All three studies reproduced the self-excited os- 
cillations, although the reduced frequencies were about 
20 percent lower in these three studies than in the exper- 
iment of M~Devit t .~  Le Balleur and Girodroux- 
Lavigne12 also predicted self-excited oscillations using 
a small-disturbance potential method with an interacted 
two-equation integral viscous model, but the computed 
reduced frequency was about 30 percent lower than in 
the experiment. More recently, EdwardsI3 used a tran- 
sonic small-disturbance potential code, coupled with a 
lag-entrainment integral boundary-layer method, to ac- 
curately predict reduced frequencies. He also accurately 
predicted the experimentally observed hysteresis of the 
oscillations with Mach number. 

Levy bIamed the poor prediction of the Navier-Stokes 
solvers on the failure of algebraic turbulence models to 
predict the flow features characteristic of shock-wave- 
boundary-layer interactions with relatively large regions 
of separated flow. Today, more advanced turbulence 
models are readily available for use with time-accurate 
Navier-Stokes solvers. In this paper, results with the al- 
gebraic Baldwin-Lomax (B-L) turbulence model14 and 
the one-equation Spalart-Allmaras (S-A) turbulence 
model15 are compared for this application. 

Governing Equations 
The governing equations are the thin-layer Navier- 

Stokes equations, written in generalized coordinates as 



where 

and Q is the vector of conserved variables given as 

Q =  If] P W  

The inviscid flux terms are 

and 

G =  

(3) 

and 

(4) 

The variable J represents the Jacobian of the transfor- 
mation: 

(7) 

The contravariant velocities are given by 

and 

where 

The pressure is obtained by the equation of state for a 
perfect gas: 

Description of the Codes 
The TLNS3D and CFL3D codes both solve the three- 

dimensional time-dependent thin-layer Navier-Stokes 
equations with a finite-volume formulation. Both can 
employ grid sequencing, multigrid, and local time step- 
ping when accelerating convergence to steady state. 

The TLNS3D code, described in detail in reference 5, 
is a central-difference code. Second-order central differ- 
ences are used for all spatial derivatives, and a blend of 
second-difference and fourth-difference artificial dissi- 
pation terms is used to maintain numerical stability. 
These artificial dissipation terms can be added in either 
scalar or matrix form. The solution is advanced explicit- 
ly in time with either a four- or five-stage Runge-Kutta 
time-marching algorithm. For the results presented in 
this paper, both matrix dissipation and a five-stage 
Runge-Kutta scheme are used. 

The CFL3D code, described in detail in reference 6, is 
an upwind code. For all results in this paper, upwind-bi- 
ased spatial differencing is used for the inviscid terms, 
and flux limiting is used to obtain smooth solutions in 
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the vicinity of shock waves. All viscous terms are cen- 
trally differenced. The equations are solved implicitly in 
time with the use of a three-factor approximate factor- 
ization (AF). Either the flux-difference-splitting (FDS) 
method of Roe'6 or the flux-vector-splitting (FVS) 
method of Van Leer17 can be employed to obtain fluxes 
at the cell faces. For all results in this paper, the FDS ap- 
proach is used. 

The turbulence models (B-L14 and S-A15) are de- 
scribed in detail in the given references. The one-equa- 
tion turbulence model is decoupled from the Navier- 
Stokes equations; the resulting partial-differential equa- 
tion is solved implicitly with three-factor AF. 

Time-Advancement and Subiteration Algorithms 
For a nondeforming mesh, equation (1) can be written 

as 

laQ - R ( Q )  7 - x  - 

where 

The time term can be discretized with backward differ- 
encing: 

where the superscripts indicate time level. When $ = 0 
the method is first-order temporally accurate; when 
9 = 1/2 the method is second-order accurate. This 
equation is implicit because the right-hand side is a 
function of the unknown flow variables at time level 
n + 1 . Different methods for solving this equation with 
the TLNS3D and CFL3D codes are explored below. 

TLNS3D 
The TLNS3D code is normally explicitly advanced in 

time (with a Runge-Kutta scheme); the right-hand side 
of equation (1 8) is taken at time level n . However, this 
time-advancement scheme is generally impractical for 
time-accurate runs with a fixed At due to severe stabili- 
ty-restricted time-step limitations. Therefore, as shown 
in reference 4, for time-accurate problems an additional 
level of iteration is introduced that is iteratively implicit. 
This additional iteration level allows the code to take a 
physical time step of nearly any size. Basically, multi- 
grid and pseudo time steps are used to iterate to the next 
physical time step. 

A pseudo time term is added to equation (1 8) as 

= R ( Q " + ' )  

where T represents pseudo time. As shown, the addi- 

tion of the pseudo time term alters the Navier-Stokes 
equations, but the a Q / &  term is treated in such a way 
that it vanishes as Q approaches its correct value at time 
level n + 1 . 

A five-stage Runge-Kutta integration scheme 
(K = 5 ) is used to iterate equation (19) in pseudo time 
as 

v" = Q" (20) 

Q"" = fl (22) 

where m is the subiteration counter and em+' + Q"" 
as rn + m . Note that the physical time step At is a con- 
stant (the same for all computational cells); however, 
AT is based on a constant CFL number (currently taken 
as 7) and varies as a function of cell size and local flow 
quantities. 

Further algorithm modifications must be made in 
equation (21) for efficiency and stability. The residual 
vector R is split into a convective and diffusive part 
R = C - D , where the diffusive part includes both phys- 
ical and artificial diffusion terms. The convective part is 
evaluated at the last Runge-Kutta step (k -  1 ) of this 
subiteration; the diffusive part is evaluated at some com- 
bination of one or more previous Runge-Kutta time 
steps (signified by k-Z ) of this subiteration: 

Unlike the explicit treatment in Ja~neson,~ (1 + $) v" 
is treated implicitly in the Runge-Kutta integration. In 
order that the residual (Le., the term in the brackets in 
equation (21)) goes to zero as the subiterations con- 
verge, ( 1 + $) a k A z /  ( A t )  AQk- ' is added and subtracted 
from the right-hand side. The final iterative-implicit 
Runge-Kutta algorithm in TLNS3D is 

v" = Q" 

At 

, k = 1, ..., K 1 ( 1  +$I ( Q ~ - ' - Q " )  - $ ( Q " - Q " - ' )  
JAt 

Q"" = fl 

CFL3D 
The CFL3D code is advanced in time with an implicit 
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approximate-factorization method. The implicit deriva- 
tives are written as spatially first-order accurate, which 
results in block-tridiagonal inversions for each sweep. 
However, for solutions that utilize FDS the block-tridi- 
agonal inversions are further simplified with a diagonal 
algorithm (with a spectral radius scaling of the viscous 
terms). 

Because of the method with which the left-hand side 
is treated for computational efficiency in steady-state 
runs (approximate factorization, first-order accuracy), 
second-order temporal accuracy is forfeited for un- 
steady computations. One method for recovering the de- 
sired accuracy is through the use of subiterations. Two 
different subiteration strategies have been implemented 
in CFL3D. The first method, which is termed "pseudo 
time subiteration (z -TS)," is similar to the strategy em- 
ployed in TLNS3D. The other method, terqed "physical 
time subiteration (t-TS)," follows Pulliam. 

For the z-TS method in CFL3D, as in TLNS3D, a 
pseudo time term is added to the time-accurate Navier- 
Stokes equations. See equation (19). This equation is 
then discretized and iterated in rn , where rn is the sub- 
iteration counter. 

In equation (28), $ and $' govern the order of accu- 
racy of the physical and pseudo time terms, respectively. 
In practice the pseudo time term is treated as first order 
(i.e., $'= 0), but the general form is shown here for 
completeness. As rn + - , the pseudo time term vanish- 
es and Q"" + en+' . If R is linearized with 

(29) 

and the quantity - (1 + $) Q"/ ( J A t )  is added to both 
sides of equation (28), then equation (28) becomes 

R ( Q " + ' )  G R ( Q " )  +-AQ" a R  
aQ 

where !Q" = Q"+'-Q",  A^= a(F-F,)/aQ, 
B = a(6--Gv)/aQ, and C = a(H-H,)/aQ.Equation 
(30) is approximately factored and written in primitive 
variable form; it is solved as a series of sweeps in each 
coordinate direction as 

(33) 

q"+' = q"+Aq" (34) 

M =-aQ/aq, A ~ =  a(F-F,)/aq,  B = a(G-G,)/aq, 
T where the primjtive vyiables are q = [ p , , ~ ,  v ,w ,p ]  , 

and C = a (H - H,)/aq. The quantity AT is based on a 
constant CFL number of 10. Multigrid is used to drive 
Aq" to zero in a reasonable number of subiterations. 

In the t-TS method, equation (1 8) is merely iterated in 
rn , where m is the subiteration counter: 

The quantity - ( 1 + $) Q"/ ( J A t )  is added to both sides, 
the residual is linearized, and the equation is approxi- 
mately factored and written in primitive variable form as 

q m + '  = qm+Aqm (39) 

AS m+-, qm+'+qnm+'. When only one series of 
sweeps is performed, q = qn and the standard time-ac- 
curate CFL3D scheme is recovered (i.e., no subitera- 
tions). Unlike the z-TS method, this subiteration 
procedure (equations (36)-(39)) utilizes only one time 
step: the physical time step A t  (= constant). Multigrid is 
currently not used for the t-TS subiteration procedure. 

Results 
For all results in this paper, second-order temporal ac- 

curacy is employed (I$ = 1/2). In addition, although 
the computations above are formulated for three-dimen- 
sional (3-D) flows, only two-dimensional (2-D) compu- 
tations are performed for this validation study. 

Laminar Flow Over Circular Cylinder 
Laminar flow over a circular cylinder is computed at 

M = 0.3 and Re = 1200 (based on diameter) on a 
101 x 49 grid, with minimum spacing at the body of 
0.002 diameters and a far-field extent of 20 diameters. 
The relative accuracy and efficiency of the subiterative 
schemes are evaluated by establishing periodic vortex 
shedding and then comparing the Strouhal number 
S t  = n d / u ,  (where n is the shedding frequency and d 
is the diameter) with the limit of St as At + 0 on this 
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grid. 
Because the primary focus of this paper is on the tem- 

poral accuracy and efficiency of the subiterative time- 
stepping schemes described earlier, grid density and 
grid extent studies are not performed for the circular cyl- 
inder flow. The authors recognize that the 101 x 49 grid 
is relatively coarse and that the computed unsteady flow 
is not grid converged for this case. Also, the use of the 
thin-layer equations on a bluff-body flow is question- 
able and will deviate to some degree from a full Navier- 
Stokes solution, as indicated in a previous study by 
Rumsey et al.'* However, the effect of grid density and 
extent is investigated below for the circular-arc airfoil 
case, for which the use of the thin-layer assumption is 
more appropriate. 

The number of subiterations required to converge the 
subiterative schemes differs for the t-TS and z-TS 
methods. An example is shown in figure 1 in which the 
CFL3D code is used with A f  = 0.2 (nondimensional- 
ized by d / a , ) .  The quantity S t / S f , , , ,  is plotted; as 
A f  + 0 ,  St approaches a value of 0.235 for CFL3D and 
0.247 for TLNS3D on this grid. For this problem, three 
subiterations are sufficient to converge the t-TS method; 
eight three-level multigrid cycles are necessary for the 
z -TS method. Although not shown, the results are sim- 
ilar for the TLNS3D code. Also, if no multigrid is em- 
ployed, the 2-TS method takes as many as twenty 
subiterations to converge to the same level. 

When significantly smaller or larger time steps are 
taken, the number of subiterations required for z -TS can 
vary. (Smaller time steps require fewer subiterations; 
larger time steps require more subiterations.) However, 
this variation has not been explored in detail in this 
study. 

0.8 

I d  
0.7 ' I  ' I  I ' I  ' I I I I I 

0 5 10 15 

su biterations 
Fig. 1. Effect of subiterations on Strouhal number for circular 

cylinder; CFL3D, Af = 0.2. 

Figure 2 shows the effect of time step A f  on the Strou- 
hal number for CFL3D with no subiterations (unmodi- 
fied scheme), CFL3D with z -TS and eight three-level 
multigrid subiterations, CFL3D with t-TS and three sub- 
iterations, and the TLNS3D code with z -TS and eight 

three-level multigrid subiterations. When no subitera- 
tions are employed, use of the explicit TLNS3D code is 
not practical for this unsteady problem because of the 
severe stability restriction (At < 0 (0.001) ). Although 
CFL3D is an implicit code, it also has a time-step limi- 
tation in practice when z-TS is not employed; for this 
particular case, the limitation is approximately A f  50.4 
(which yields a maximum CFL number in the flow field 
of about 400). This limit is indicated in the figure by a 
vertical bar. 

When no subiterations are employed in CFL3D, the 
accuracy of the code quickly diminishes (roughly linear- 
ly with Af , which is indicative of first-order temporal 
accuracy) as the time step is increased. In contrast, when 
subiterations of the type z -TS are used in either code, 
not only are larger time steps possible, but the accuracy 
is also significantly enhanced. Even at a time step as 
high as A f  = 1.0 (roughly 15 steps per period), 
St /S t , , , ,>  0.9 for both codes. The CFL3D code with 
the t-TS method is still restricted by the upper time-step 
limit of At = 0.4. However, the accuracy is dramatical- 
ly improved in comparison with the noniterative results 
and is comparable with the z -TS results. 

+ CFL3D, no subiterations 
--=--. CFL3D, T-TS 
-+- CFL3D, t-TS 

TLNS3D, T-TS 

/ no-subiteration 
/ time-step limit 

0.7 
0.0 0.2 0.4 0.6 0.8 1.0 1.2 

At 
Fig. 2. Effect of subiteration type and time step on Strouhal num- 

ber for circular cylinder. 

The second-order temporal accuracy of the codes is 
difficult to verify with St because the number of steps 
per period is obtained by counting the number of time 
steps from maximum cI to maximum cl and, hence, can 
only be accurate to f l  unless the true location of maxi- 
mum c, is interpolated. For example, at a time step of 
A t  = 0.2, 71 steps per period indicates that Sf lies 
somewhere in the range 0.231-0.238. Other quantities, 
such as peak lift and drag coefficients, are more amena- 
ble to this type of analysis because they are less sensitive 
to number of steps per period. Table 1 shows IC[, maxi and 
c ~ , ~ ~ ~  as a function of time step for the t-TS method in 
the CFL3D code. The quantity c ~ , ~ ~ ~  is not shown be- 
cause its variation from its extrapolated value of 1.7714 
is smaller than the fourth decimal place at the smallest 
time steps. Note that the error is approximately quadrat- 
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Table 1. Verification of Second-Order Temporal Accuracy for t-TS in CFL3D, with 101 X 49 Cylinder Grid 

ic (i.e., it approximately quadruples when the time step 
is doubled) only for the smallest three time steps taken. 
Although not shown, results with the z -TS method in 
CFL3D are similar. In other words, for this problem on 
the 101 x 49 grid, at least 500 time steps per shedding 
cycle are necessary to ensure that second-order temporal 
accuracy is achieved. If fewer steps per cycle are taken, 
then temporal errors no longer necessarily vary with the 
square of the time step. 

The true test of a scheme’s efficiency is the central 
processing unit (CPU) time required to obtain a result 
for a given level of accuracy. In figure 3, St /S t , , , ,  is 
plotted versus CPU time per shedding cycle for CFL3D 
with the standard (unmodified) scheme with no subiter- 
ations, the z -TS method with eight multigrid subitera- 
tions, and the t-TS method with three subiterations. 
Each curve is a plot of the results obtained by varying 
At .  Clearly, the t-TS method is the most efficient; 
S t / S t , , ,  ,, is nearly equal to 1 .O in as little as 4 CPU sed  
period (on NASA Ames Research Center’s Aerodynam- 
ic Consolidated Supercomputer Facility (ACSF) CRAY 
C-90 computer). This result corresponds to a time step 
of 0.2 and roughly 11 p sec per grid point per time step. 
In contrast, the z -TS method requires about 30 sec/peri- 
od, or roughly 85 p sec per grid point per time step, to 
obtain the same level of accuracy (this result also corre- 
sponds to a time step of 0.2). Not only is each subitera- 
tion more expensive in the z -TS method because of the 
use of multigrid, but more subiterations are necessary to 
converge the iterative scheme far enough. Surprisingly, 
in terms of efficiency, the z-TS method is not signifi- 
cantly more efficient than CFL3D with no multigrid and 
no subiterations; this latter method can run in roughly 4 
p sec per grid point per time step. The efficiency of the 
TLNS3D code is not shown in this figure because its 
CPU times (roughly 360 psec per grid point per time 
step for T -TS with eight multigrid subiterations) are sig- 
nificantly larger than those of CFL3D. Unlike the 
CFL3D code, the TLNS3D code has not been optimized 
for 2-D problems. For 3-D problems, the two methods 
are expected to be comparable in efficiency. 

A sketch that summarizes the effects of subiterations 
and time step is shown in figure 4. The dashed line indi- 
cates the converged solution at a given time step. It is 
achieved when a sufficient number of subiterations are 
performed. However, note that the converged solution at 
a given time step still deviates from the “true” solution 
at an infinitely small time step. This error is generally 
greater at larger time steps, but the region of true sec- 

1.2 

1.1 

0 
t 3 1.0 

\ 0.9 

CI cn 

v, 
-w 

0.8 

0.7 

-++ no subiterations 
--a3--. 7-TS 
-+- t-TS 

0 10 20 30 40 

CPU time/period, sec 
Fig. 3. Efficiency of subiteration types for circular cylinder with 

C n 3 D .  

ond-order temporal accuracy exists only over a portion 
of the time-step axis near At = 0 .  

Turbulent Flow Over 18-Percent-Thick Circular-Arc 
Ailfoil 

Turbulent flow over an 18-percent-thick circular-arc 
airfoil is computed at Mach numbers between 
M = 0.72-0.76 and Re = 11 million based on chord 
length; the computational results are compared with the 
experimental results of M~Devi t t .~  At these conditions, 
the circular-arc airfoil can experience self-induced peri- 
odic shock oscillations. 

Assessments are made of the effect of time step, sub- 
iteration type, grid size, grid extent, Mach number, tur- 
bulence model, computer code, and tunnel walls on the 
computed unsteady solution. A complete list of param- 
eters and results for the various circular-arc airfoil runs 
are given in Table A. 1 in the appendix. The CPU times 
in seconds per period are given for the ACSF CRAY C- 
90 computer (designated by a “C”), and for NASA Lan- 
gley Research Center’s CRAY Y-MP computer (desig- 
nated by a “Y”). 
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region of true 
second-order 
temporal accuracy 

increasing h, 
subiterations 

0 - 
Increasing time step 

Fig. 4. Sketch of time step and subiteration effect. 

Because the S-A turbulence model is a field-equation 
model, a partial-differential equation is solved for a tur- 
bulence quantity related to the eddy viscosity. This 
equation is solved iteratively in both codes (decoupled 
from the Navier-Stokes equations) with a three-factor 
implicit AF scheme. Because the model contains advec- 
tive terms, the turbulence equation must be solved time 
accurately. Currently, first-order temporal differencing 
is employed, and the advective terms are discretized 
with first-order upwind differencing. If the S-A turbu- 
lence model is instead advanced in time with local time 
stepping (i.e., the turbulence quantity is treated in a qua- 
si-steady manner with respect to the instantaneous un- 
steady flow field at each time step), then the frequencies 
are predicted to be about 10 percent lower for this prob- 
lem, 

Most of the computations in this study are performed 
on a 185 x 65 C mesh with average minimu? normal 
spacing at the wall of approximately 4.3 x 10- chords, 
a maximum grid extent of approximately 18 chords, and 
129 points on the airfoil. This minimum spacing corre- 
sponds to y+ values between about 1.8 (near the leading 
edge) and 0.5 (near the trailing edge) for a typical un- 
steady computation at M = 0.76. Part of the lower half 
of this grid is shown in figure 5, along with pressure 
contours over the upper half of the grid at one point in 
the unsteady cycle of run #7 of Table A.l at M = 0.76. 
This grid is made by taking every other point from a 
369 x 129 grid. Grid density studies are performed on 
this finer grid, and grid extent studies are performed by 
adding points at the outer boundary, which extends the 
far-field extent to about 45 chords. A second grid, of a 
different family, is a 257 x 81 C mesh with average min- 
imum normal spacing at the wall of approximately 
3 . 6 ~  chords, a maximum grid extent of approxi- 
mately 18 chords, and 177 points on the airfoil. It is used 
to assess the effect of Mach number. 

Boundary conditions at the body surface are no slip, 
with an adiabatic wall temperature and +/an = 0. At 
the curved outer boundary, far-field Riemann invariant 
boundary conditions are employed. At the downstream 

Fig. 5. Typical unsteady pressure contours and one-half of 
185 X 65 C mesh for circular-arc airfoil. 

flat portion of the C mesh, all flow quantities are extrap- 
olated. The free-stream temperature is taken to be 486 R. 

The effect of tunnel walls is assessed on a two-block 
(2B) grid (one above and one below the airfoil) with 
241 x 97 grid points in each block. Part of the lower 
block of this grid is shown in figure 6, along with pres- 
sure contours in the upper block at one point in the un- 
steady cycle of run #22. Minimum normal spacing at the 
wall is 3.9 x chords, and the grid extends 2 chords 
upstream of the leading edge and 3 chords downstream 
of the trailing edge. A total of 258 points are used on the 
airfoil surfaces. The upper and lower tunnel walls are 
treated as inviscid surfaces, and the exit pressure is pre- 
scribed (with all other quantities extrapolated from the 
interior of the grid) in order to obtain the desired average 
Mach number at a specified location in the tunnel. The 
following boundary conditions are used at the inflow 
boundary: the velocity normal to the streamwise direc- 
tion is set to zero, pressure is extrapolated from the inte- 
rior of the grid, and reference entropy and enthalpy 
conditions are imposed. 

Effect of Subiteration Tvoe and Time SteD 
Figure 7 shows the effect of number of subiterations 

on the reduced frequency k (=2xn ( d 2 )  /u, ) for this 
problem on the 185 x 65 grid, where n is the unsteady 
frequency and c is the chord length. For the 2 -TS meth- 
od, at least fifteen three-level multigrid subiterations are 
sufficient for both CFL3D and TLNS3D at a time step 
of At = 0.05 (about 170 steps per period). The time step 
is nondimensionalized by c/a ,  . Note that this number 
of subiterations is roughly twice that required for the 



Fig. 6. Typical unsteady pressure contours and one-half of 
241 X 97 X 28 tunnel grid for circular-arc airfoil in tunnel. 

laminar circular cylinder computations. For the t-TS 
method, even twenty subiterations is not sufficient to 
fully converge the solution at a time step of At = 0.005 
(over 1700 steps per period). This slow convergence 
with subiterations for t-TS is peculiar to the use of the 
field-equation turbulence model. Note from run #20 in 
Table A.l that when the B-L turbulence model is em- 
ployed, only three t-TS subiterations are required to pre- 
dict reduced frequency in good agreement with the z -  
TS result (run #12). This inconsistent behavior of the t- 
TS method warrants further study. 

+ CFL3D, T-TS, At=0.05 

-+- TLNS3D, T-TS, Atz0.05 
CFL3D, t-TS, At=0.005 

0.44 1, 
0.40 , , , , , , , , , , , , , , , , , , 

0 5 10 15 20 25 

subiterations 
Fig. 7. Effect of subiterations on reduced frequency for circular- 

arc airfoil; M = 0.76, 185 X 65 grid, S-A model. 

Figure 8 shows the reduced frequency as a function of 
time step At for the two codes on the 185 x 65 grid. Re- 
sults with the t-TS method are not shown in the figure 
because of the excessive number of subiterations that 

are required to converge it when the field-equation tur- 
bulence model is employed. As was the case for the cir- 
cular cylinder flow, the time step for the CFL3D code 
with no subiterations (or with t-TS) is limited in prac- 
tice; on this grid, a time step no larger than At = 0.005 
(which yields a maximum CFL number in the flow field 
of about 2000) can be taken. This time-step limit is indi- 
cated in figure 8 by a vertical bar. The z -TS method re- 
moves the time-step limitation. All results approach the 
same value of approximately k = 0.49 -0.50 for an infi- 
nitely small time step on this grid. At a time step of 
At = 0.10, which corresponds to about 90 steps per pe- 
riod, the frequency is predicted to within approximately 
7 percent of its value with an infinitely small time step 
on this grid. If At = 0.05 (approximately 170 steps per 
period), then k is predicted to within about 1 percent. 
With no subiterations, if At = 0.000625 (14067 steps 
per period), then k is predicted to within approximately 
5 percent. Recall that the number of steps per period can 
be obtained only to +1 . For example, at a time step of 
0.1, 87 steps per period indicates that k lies somewhere 
in the range of 0.470-0.481 (it is given as 0.475). The 
smaller the time step, the more accurately k can be de- 
termined. All z -TS results in this figure were obtained 
with fifteen three-level multigrid subiterations. 

At first glance, the reduced frequency values predict- 
ed by z -TS for the two codes in figure 8 might appear to 
vary approximately quadratically with At (as should be 
the case for a temporally second-order-accurate 
scheme). However, a significant uncertainty associated 
with k at the larger time steps still exists, and the earlier 
circular cylinder results suggest that the computations 
are probably not truly temporally second-order accurate 
until on the order of 500 time steps per cycle are taken. 
Table 2, which shows the effect of time step on the max- 
imum and minimum force coefficients and on k for the 
185 x 65 grid, confirms the fact that second-order tem- 
poral accuracy has not been achieved at the larger two 
time steps. Further refinement in time is necessary to de- 
termine the time step below which the error varies qua- 
dratically with A t .  Note from the table that, although k 
is underpredicted at the largest time step by as much as 
6 percent from its value at the smallest time step, peak 
lift is in error by as much as 19 percent and peak drag is 
in error by as much as 23 percent on this grid. 

The reduced frequency is plotted as a function of CPU 
time per period in figure 9 for results on the 185 x 65 
grid. Each curve is generated by varying the time step 
for a given method. Clearly, the reduced frequency is 
predicted to within a given level of accuracy in far less 
CPU time when z -TS subiterations are employed as op- 
posed to no subiterations. This turbulent-flow result is 
different than the earlier laminar-flow result (of figure 
3) that z -TS subiterations are comparable in efficiency 
to no subiterations. Results using t-TS subiterations 
again are not plotted because of the excessive number of 
subiterations required when the S-A model is employed. 
The efficiency of the TLNS3D code is not shown in this 
figure for the same reason mentioned in the circular cyl- 
inder study. 

The approximate speeds of the various methods in p s 
per grid point per time step for this turbulent flow com- 
putation on the CRAY C-90 are as follows: 6 for CFL3D 
with no subiterations, 170 for CFL3D with fifteen three- 
level multigrid z-TS subiterations, and 470 for 
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Table 2. Effect of Time Step on k and Lift and Drag Peak Values; M = 0 .76 ,~  -TS, 185 X 65 Grid, S-A Model 

Code 

CFL3D 

Grid stepslperiod k IC,, mllxl min max 

185x65 168 0.492 0.337 0.061 0.075 

I I I I I I I 0.025 I 332 I 0.498 I 0.342 I 0.064 I 0.079 I 

I 

I I 0.0125 I 665 I 0.497 I 0.330 I 0.062 I 0.077 I 

I I I I I 

369x129 I 176 I 0.470 I 0.361 I 0.068 I 0.079 I 

Table 3. Effect of Grid on k and Lift and Drag Peak Values; M = 0.76, T -TS, At = 0.05 , S-A Model 
I I I I I I I 1 

I 369 x 129 I 180 I 0.459 I 0.378 I 0.073 I 0.085 I 
TLNS3D I 185x65 I 168 I 0.492 I 0.363 I 0.068 I 0.084 

-+- CFL3D, no subiterations 

-+- TLNS3D, T-TS 
CFL3D, T-TS 

t-TS and 
/ no-subiteration 

0.40 
0.00 0.02 0.04 0.06 0.08 0.10 

At 
Fig. 8. Effect of time step on reduced frequency for circular-arc 

airfoil; kf = 0.76, 185 X 65 grid, S-A model. 

TLNS3D with fifteen three-level multigrid T -TS subit- 
erations. The speed for CFL3D with t-TS subiterations 
averages about 5.5 p s per subiteration. Hence, if three 
subiterations are required, then the t-TS method costs 
about 17 p s per grid point per time step. If twenty sub- 
iterations are required, then it costs about 110 ps per 
grid point per time step. 

Effect of Grid 
The effect of doubling the grid density is shown in Ta- 

ble 3 with the T -TS method, a time step of At  = 0.05, 

k 0.48 n*' increasing 
time step t " / 

0.44 1 

0.0 0.4 0.8 1.2 1.6 X103 

CPU time/period, sec 

Fig. 9. Eficiency of subiterations for circular-arc airfoil; 
M = 0.76, CFL3D, 185 X 65 grid, S-A model. 

and fifteen three-level multigrid subiterations for both 
codes. The reduced frequency is overpredicted by the 
coarse grid by as much as 7 percent from its value on the 
finest 369 x 129 grid, peak lift is in error by as much as 
7 percent, and peak drag is in error by as much as 10 per- 
cent. Note that at this time step, even results on the finest 
369 x 129 grid are not completely code converged. The 
reduced frequencies predicted by CFL3D and TLNS3D 
differ by about 2 percent, and the peak lift and drag co- 
efficients differ by 5-8 percent. 

The effect of grid extent is also investigated. As indi- 
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cated in runs #14 and #35 in Table A.l ,  an increase in 
the grid extent from 18 chords to 45 chords has no effect 
for the CFL3D code (compared with run #7), and only a 
small effect (a decrease in k of less than 1 percent) for 
the TLNS3D code (compared with run #29). 

ComDarison with Experiment 
The effect of Mach number is explored on the 

257 x 81 grid with CFL3D. In particular, the ability of 
the Navier-Stokes code to predict tly hysteresis effect 
noted in the experiment of McDevitt and the computa- 
tions of Edwards13 is tested. In the experiment, the flow 
remained steady as the Mach number was increased in 
increments of 0.001 up to M = 0.76, at which point the 
oscillatory flow was established. After the oscillatory 
flow was established, unsteady flow persisted as the 
Mach number was lowered to approximately 0.733, at 
which point the flow became steady again. In the inter- 
active boundary-layerhmall-disturbance potential code 
results of Edwards, the computed hysteresis range ex- 
tended from M = 0.755 -0.735 . 

The hysteresis effect is tested by running CFL3D in 
steady-state mode; M = 0.70 at the start and is and in- 
creased in increments of 0.01. At every Mach number up 
to M = 0.75, the lift coefficient oscillates about zero 
with a magnitude of order (near machine zero) and 
the residual (right-hand side) of the equation for density 
decreases at least 5 orders of magnitude (i.e., the solu- 
tions converges). Note that to obtain machine-zero lev- 
els of lift, the grid must be symmetric about the x-axis. 
The computations must also be initiated at a Mach num- 
ber below the hysteresis region and then restarted at suc- 
cessively higher Mach numbers from fully converged 
lower Mach-number solutions. 

As shown in figure 10, as the Mach number is in- 
creased, the separation point on the airfoil for this grid 
moves forward from x/c = 0.94 when M = 0.70 to 
x/c = 0.84 when M = 0.75. A shock first appears at 
x/c = 0.61 when M =  0.72. It moves slightly down- 
stream as the Mach number is increased. When 
M = 0.76, the separation point jumps forward to the 
base of the shock at x/c = 0.69, and the lift starts to os- 
cillate about zero with exponentially increasing magni- 
tude. Eventually, the solution settles into a periodic 
cycle. This intersection of the trailing-edge separation 
point with the shock is probably the physical mechanism 
that triggers the onset of the unsteady flow with increas- 
ing Mach number. 

Starting from the unsteady solution at M = 0.76, the 
code is then run time accurately at decreasing Mach 
numbers. The flow remains unsteady at every Mach 
number down to M = 0.73 . Below this, the oscillations 
damp out and the solution becomes steady. These results 
are shown in figure 1 1. The reduced frequencies and the 
hysteresis region are predicted with reasonable accura- 
cy. Although not shown, the prediction of the hysteresis 
region was sensitive to the grid density and the discreti- 
zation scheme. 

It is not known whether use of the current time-ad- 
vancement schemes are appropriate for computing the 
hysteresis region. If one assumes that hysteresis is asso- 
ciated with an unstable fixed point of the Navier-Stokes 
equations, then a direct solver rather than a time-march- 
ing algorithm may be necessary to insure that the lower 
(steady) branch is indeed a fixed-Doint solution. This is- 

++ upstream extent of separation 
1.1 --=--. shock location 

1 .o i 
x/c 0.9p-\ 

0.8 

0.7 1 
_ _ - -  _ - -  

0.6 I '  ' @ ' I ' I 

0.70 0.72 0.74 0.76 

Mach number 
Fig. 10. Trailing-edge separation and shock locations; CFL3D, 

257 X 81 grid, S-A model. 

+ computations, M = O . O l  
______.  experiment, M = O . O O l  

M decreasing 
i-- 0.6 1 

k 0.4 

0.2 

O.O c M increasina - 
-0.2 

0.71 0.72 0.73 0.74 0.75 0.76 

Mach number 
Fig. 11. Computed hysteresis region for circular-arc airfoil; 

CFL3D, 257 X 8 1 grid, S-A model. 

sue warrants further study. 
The lift histories from two different turbulence mod- 

els are shown as a function of t * (= t /  ( d u m )  ) in figure 
12 for M = 0.76. The S-A model with both CFL3D and 
TLNS3D yields a reduced frequency that agrees well 
with the experimental value of approximately 0.472. 
The B-L model predicts a lower frequency and lower 
amplitudes, consistent with previous results that utilized 
algegaic turbulence models. (See Edwards and Tho- 
mas. 1 Note, however, that previous Navier-Stokes 
results with the B-L model predicted steady flow at a 
similar Mach number of M = 0.754, whereas computa- 
tions at M = 0.78 exhibited unsteady flow. These re- 
sults suggest that the present B-L computations at 
M = 0.76 may be close to the lower end of the Mach- 
number range in which the unsteady flow occurs for this 
turbulence model. 
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- CFL3D, S-A 
1.2 _ _ _ _ _ _ _  CFL3D, B-L 

TLNS3D, S-A 
experiment 1 .o I CFWD, S-A, kz0.492 

CFL3D, B-L, k=0.394 
TLNS3D, S-A, k=0.492 

0.0 

-0.4 
0 2 4 6 8 1 0  

t* 
Fig. 12. Lift-coefficient variation for circular-arc airfoil; 

M = 0.76, 185 X 65 grid. 

Figure 13 shows the shock position on the airfoil sur- 
face, npndimensionalized by chord, as a function of t, 
where tis the fractional cyclic time (t = 0 + 1 represent! 
one period of motion). Following M~Devi t t ,~  the time t 
= 0 is taken to be the time when the shock is at midchord. 
(If the shock does not reach midchord in the computa- 
tions, then t = 0 is the time when the shock is closest to 
midchord.) The S-A model follows the experimental 
data of McDevitt closely, although it does not predict 
motion of the shock forward of midchord. (Note that the 
discrete jumps in the computed results in the figure are 
a result of assigning a shock location to the nearest 
streamwise grid point.) Results with both CFL3D and 
TLNS3D are nearly identical. The B-L model predicts a 
significantly smaller movement of the shock than the S- 
A model. 

The effect of the grid density on the predicted shock 
position is shown in figure 14. The coarser grid is suffi- 
cient to capture the general character of the shock mo- 
tion for this flow. Upper surface pressure coefficients 
taken at five different times during the unsteady cycles 
for CFL3D with both the S-A and B-L models and for 
TLNS3D with the S-A model are shown in figures 15, 
16, and 17, respectively. 

The CFL3D code is also run at M = 0.74 on the 
185 x 65 grid. The predicted k is 0.477, similar to the 
earlier results on the 257 x 81 grid. Variation of shock 
position is shown in comparison with results at 
M = 0.76 in figure 18. At the lower Mach number, the 
shock travels slightly further forward of midchord, in 
better agreement with the experimental results. Howev- 
er, the lower Mach number computation also changes 
the character of the shock motion between t = 0.4-0.8. 

The effect of the tunnel walls is investigated by using 
the tunnel grid shown in figure 6. In the experiment, the 
local side-wall Mach number (1.34 chords upstream of 
the leading edge) was used to estimate Mach number in 
the center of the channel, and an empirical relationship 
was then employed to estimate M, . For M, = 0.76, the 
Mach number in the tunnel was Mx,c = -- 0.744. (See 

0 
\ r 

v) 
X 

0.8 

0.6 

0.4 

0.2 t 
0.0 * 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 
- 
t 

Fig. 13. Variation of shock location on surface of circular-arc air- 
foil; M = 0.76, 185 X 65 grid. 

1.4 r 
- 185x65 
_ _ _ _ _ _ _  369x129 

1.2 1 experiment 

t < 0.8 
r 
0 x 0.6 

0.4 

0.2 t 
0.0 I '  ' I ' ' ' I ' I I '  " 
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 

- 
t 

Fig. 14. Effect of grid on variation of shock location on surface of 
circular-arc airfoil; M = 0.76, CFL3D, S-A model. 

McDevitt et al.I9) In the computation (run #22), the 
back pressure boundary condition was adjusted until an 
average Mach number of M = 0.743 was obtained 1.33 
chords upstream of the leading edge. 

Tunnel-grid results are shown in figures 19, 20, and 
21. In figure 19, the M = 0.76 results on the 185 x 65 C 
mesh (free-air grid) are included for comparison. The 
tunnel-grid shock motion is in excellent agreement with 
the experimental results, including tbe movement of the 
shock forward of midchord between t = 0 and 0.2. How- 
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Fig. 15. Upper surface pressure coefficients for circular-arc air- 
foil; M = 0.76, CFWD, 185 X 65 grid, S-A model. 

Fig. 17. Upper surface pressure coefficients for circular-arc air- 
foil; M = 0.76, TLNS3D, 185 X 65 grid, S-A model. 
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Fig. 16. Upper surface pressure coefficients for circular-arc air- 
foil; M = 0.76, CFL3D, 185 X 65 grid, B-L model. 

ever, the predicted frequency of k = 0.514 is somewhat 
higher than the free-air computations and the experi- 
mental results. The upper surface pressure coefficients 
taken at five times in the unsteady cycle are given in fig- 
ure 20. Figure 21 is a plot of pressure contours over the 
entire airfoil at one time in the cycle; the figure shows 
the relative positions of the uppe? and lower surface 
shocks. This figure corresponds to t of about 0.15, when 
the shock is beginning to “disappear” forward of the 
midchord on the upper surface at the same time that a 

- M=0.76 

experiment, M=0.76 

1 .o 

0.0 
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 

Fig. 18. Effect of Mach number on shock location on surface of 
circular-arc airfoil; CFUD, 185 X 65 grid, S-A model. 

new shock is forming near the trailing edge. 

Conclusions 

Accuracy and Eficiency of Subiterative Schemes 
The use of subiterations in both explicit and implicit 

Navier-Stokes codes has been explored for unsteady 
flows. Two different methods have been examined. One 
uses pseudo time subiterations ( T -TS) in combination 
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Fig. 19. Effect of tunnel grid on shock location on surface of cir- 
cular-arc airfoil; M, = 0.76, Cm3D, S-A model. 
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Fig. 20. Upper surface pressure coefficients for circular-arc air- 

grid, S-A model. 
foil in tunnel; Mx,c = =. 0.743, CFWD, 241 x 97 x 2B 

with multigrid both to improve accuracy and to over- 
come any inherent physical time-step limitations; the 
other method, of practical use only in the implicit code, 
uses physical time subiterations (t-TS) to improve accu- 
racy. 

Both laminar flow over a circular cylinder and turbu- 
lent flow over an 18-percent-th~ck circular-arc airfoil 
have been examined. For laminar flow, the choice of 
type of subiterative scheme (if any) in an implicit ap- 

Fig. 21. Unsteady pressure contours; Mx,c = -,,33 = 0.743 , 
CFWD, 241 x 97 x 2B grid, S-A model. 

proximate-factorization code such as CFL3D is a trade- 
off between accuracy and central processing unit (CPU) 
time. In general, the t-TS method (which requires three 
subiterations per time step for the time-step ranges and 
grids utilized in this study) yields the most accurate re- 
sult for a given CPU time. The method with no subiter- 
ations can be as accurate for a given CPU time as the z - 
TS method (which requires eight three-level multigrid 
subiterations). However, the method with no subitera- 
tions is at best first-order accurate in time due to linear- 
ization and factorization errors. In practice, the t-TS 
method and the method with no subiterations possess 
time-step limits that may be impractically small for cer- 
tain problems. In such cases, the z -TS method allows 
larger time steps. For an explicit code such as TLNS3D, 
only a pseudo time subiterative technique such as z -TS, 
which removes the restrictive explicit-code time-step 
limitation, is practical. 

In spite of the fact that second-order temporal discret- 
izations are used in the numerical methods, small time 
steps are necessary to fully realize second-order tempo- 
ral accuracy. For the circular cylinder flow, on the order 
of 500 time steps per period are required. 

For turbulent flow over the circular-arc airfoil, ap- 
proximately fifteen three-level multigrid z -TS subitera- 
tions are required for the time-step ranges and grids 
utilized in this study. Unlike the laminar-flow results, 
the z -TS subiterations yield a given level of accuracy in 
significantly less CPU time than the scheme with no 
subiterations when the Spalart-Allmaras (S-A) turbu- 
lence model15 is employed. The t-TS method in con- 
junction with the S-A model requires an excessive 
number of subiterations; the t-TS method in conjunction 
with the Baldwin-Lomax (B-L) turbulence model14 
does not. This discrepancy requires further study. Both 
the CFL3D and TLNS3D codes yield similar reduced 
frequencies; the effect of time step and grid size has 
been assessed for both codes. 

Comparison with 18-Percent-Thick Circular-Arc Airfoil 
Experiment 

Thin-layer Navier-Stokes computations used with the 
S-A turbulence model accurately predict the experimen- 
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tal reduced frequency of oscillations on the circular-arc 
airfoil, as well as the Mach-number range within which 
hysteresis takes place. The motion of the shock over the 
airfoil surface at M = 0.76 with both CFL3D and 
TLNS3D agrees well with experimental results, except 
that the motion of the shock forward of midchord is not 
predicted. Computations at a slightly lower Mach num- 
ber of M = 0.74 indicate a sensitivity of the shock mo- 
tion to Mach number, including the extent of the 
forward motion. When wind-tunnel walls are modeled 
and the experimental Mach number is duplicated, the 
predicted motion of the shock agrees well with experi- 
mental results at a reduced frequency that is approxi- 
mately 9 percent higher than the experimental reduced 
frequency. The B-L turbulence model yields a lower lift 
amplitude (about one-third the magnitude) and a lower 
frequency (by about 20 percent) than the S-A model. Al- 
so, the B-L model does not predict as large a range of 
shock motion as the S-A model. 
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Appendix 

Table A.l. Summary of Circular-Arc Airfoil Computations Performed 
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